Southwest Jiaotong University School of Mathematics


首页  >  学术科研  >  数学系  >  正文


来源:   作者:微分方程与动力系统     日期:2020-12-22 10:41:38   点击数:  

题目: Lotka-Volterra competition system with resource-dependent dispersals

报告人:王治安 教授 博士生导师 香港理工大学

摘要:In this talk, we discuss the global boundedness and asymptotic stability of a Lotka-Volterra competition system in a two-dimensional bounded domain with Neumann boundary conditions, where the motility (diffusion and/or advection) of two competing species depends on the distribution of the resource that satisfies a dynamical reaction-diffusion equation. We first establish the existence of classical solution with uniform-in time bound. Then by constructing Lyapunov functionals, we establish the global stability of the spatially homogeneous exclusion steady states and coexistence steady states under certain conditions on parameters. Our result is a development of existing results where the resource is a given function of space or time instead of one determined by an evolutionary equation as considered in our present work.  

时间:202012月23日(周三)下午 15:00-16:00

地点:腾讯会议 ID914 548 313



王治安,香港理工大学应用数学系教授,从事与生物数学相关的偏微分方程研究,主要研究方向是趋化及其相关模型的建模及理论分析与数值模拟。CPDEJMPAM3ASJDESIAM J Math AnalSIAM, J. Appl. Math等一流杂志上发表SCI文章60余篇,H指数20。现担任杂志 DCDS-B编委和香港数学会秘书长, 曾获香港数学会颁发的青年学者奖以及2013 JMAA杂志年度最佳论文奖。